Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease

Author:

Egerman Marc A.,Wong Jenny S.,Runxia Tian,Mosoyan Gohar,Chauhan Kinsuk,El Salem Fadi,Meliambro Kristin,Li Hong,Azeloglu Evren,Coca Steven,Campbell Kirk N.,Raij Leopoldo

Abstract

ABSTRACTUrinary plasminogen/plasmin, or plasmin(ogen)uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin(ogen) as a “second hit” in kidney disease progression has yet to be demonstrated in vivo, and the association between plasmin(ogen)uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin(ogen)uria and urinary endothelin-1 (ET1). In a glomerular disease biorepository cohort (n=128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin(ogen)uria for correlations with renal outcomes. Increased glomerular plasmin(ogen) was found in PAN rats and FSGS patients. PAN nephropathy was associated with increases in plasmin(ogen)uria, proteinuria, and urinary ET1. Amiloride was protective against PAN-induced glomerular injury, reducing urinary ET1 and oxidative stress. In patients, we found associations between plasmin(ogen)uria and edema status as well as eGFR. Our study demonstrates a role for plasmin(ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin(ogen)uria and eGFR. Together, these findings suggest a role for plasmin(ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.TRANSLATIONAL STATEMENTProteinuria is associated with CKD progression, and increased cardiovascular morbidity and mortality. The underlying mechanisms of podocyte injury, the hallmark of proteinuric kidney disease, are poorly understood with limited, non-specific therapeutic options. This study adds to the evidence that plasmin(ogen) in the urine of proteinuric patients is associated with podocyte injury, edema, and impaired renal function. Previously published results from us and others, taken together with our current rodent model and human data, suggest that urinary plasmin(ogen) is a potential targetable biomarker. Efforts to decrease plasmin(ogen)-mediated podocyte injury could be part of a novel therapeutic strategy for glomerular disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proteolysis and inflammation of the kidney glomerulus;Cell and Tissue Research;2021-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3