α-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1-dependent adrenal activation

Author:

Yuan Yexian,Xu Pingwen,Jiang Qingyan,Cai Xingcai,Wang Tao,Peng Wentong,Sun Jiajie,Zhu Canjun,Zhang Cha,Yue Dong,He Zhihui,Yang Jinping,Zeng Yuxian,Du Man,Zhang Fenglin,Ibrahimi Lucas,Schaul Sarah,Jiang Yuwei,Wang Jiqiu,Sun Jia,Wang Qiaoping,Wang Songbo,Wang Lina,Zhu Xiaotong,Gao Ping,Xi Qianyun,Yin Cong,Li Fan,Xu Guli,Zhang Yongliang,Shu GangORCID

Abstract

SummaryBeneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercisein vivo. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysisin vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically-derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3