Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity

Author:

Constance William D,Mukherjee Amrita,Fisher Yvette E,Pop Sînziana,Blanc Eric,Toyama Yusuke,Williams Darren W

Abstract

AbstractBuilding arborisations of the right size and shape is fundamental for neural network function. Live imaging studies in vertebrate brains strongly suggest that nascent synapses are critical for branch growth during the development of axonal and dendritic arborisations. The molecular mechanisms underlying such ‘synaptotropic’ events are largely unknown.Here we present a novel system in Drosophila for studying the development of complex axonal arborisations live, in vivo during metamorphosis. In these growing axonal arborisations we see a relationship between the punctate localisations of presynaptic components and branch dynamics that is very similar to synaptotropic growth described in fish and frogs. These presynaptic components however do not appear to represent functional presynaptic release sites and are not paired with clusters of neurotransmitter receptors. Pharmacological and genetic knockdowns of evoked and spontaneous neurotransmission do not impact the outgrowth of these neurons. Instead, we find that axonal branch growth is regulated by the dynamic focal localisations of synaptic adhesion proteins Neurexin and Neuroligin. These adhesion complexes provide selective stability for filopodia by a ‘stick and grow’-based mechanism wholly independent of synaptic activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3