Author:
Singer Jochen,Kuipers Jack,Jahn Katharina,Beerenwinkel Niko
Abstract
AbstractUnderstanding the evolution of cancer is important for the development of appropriate cancer therapies. The task is challenging because tumors evolve as heterogeneous cell populations with an unknown number of genetically distinct subclones of varying frequencies. Conventional approaches based on bulk sequencing are limited in addressing this challenge as clones cannot be observed directly. Single-cell sequencing holds the promise of resolving the heterogeneity of tumors; however, it has its own challenges including elevated error rates, allelic dropout, and uneven coverage. Here, we develop a new approach to mutation detection in individual tumor cells by leveraging the evolutionary relationship among cells. Our method, called SCIΦ, jointly calls mutations in individual cells and estimates the tumor phylogeny among these cells. Employing a Markov Chain Monte Carlo scheme we robustly account for the various sources of noise in single-cell sequencing data. Our approach enables us to reliably call mutations in each single cell even in experiments with high dropout rates and missing data. We show that SCIΦ outperforms existing methods on simulated data and applied it to different real-world datasets, namely a whole exome breast cancer as well as a panel acute lymphoblastic leukemia dataset. Availability: https://github.com/cbg-ethz/SCIPhI
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献