Genomic signatures of honey bee association in an acetic acid symbiont

Author:

Smith Eric A.,Newton Irene L. G.ORCID

Abstract

AbstractHoney bee queens are central to the success and productivity of their colonies; queens are the only reproductive members of the colony, and therefore queen longevity and fecundity can directly impact overall colony health. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence queen and colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized by a few bacteria, notably an acetic acid bacterium not seen in worker guts: Bombella apis. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes associated with the ecological transition to bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon them the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step towards identifying potential benefits provided by the honey bee queen microbiota to the colony’s matriarch.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3