Parallel genomic evolution of parasite tolerance in wild honey bee populations

Author:

Bozek Katarzyna,Rangel Juliana,Arora Jatin,Tin Mandy,Crotteau Emily,Loper Gerald,Fewell Jennifer,Mikheyev Alexander

Abstract

Sudden biotic pressures, such as those from novel diseases and pathogens, require populations to respond rapidly or face potential extinction. How this response process takes place remains poorly understood, particularly in natural environments. In this study we take advantage of unique decade-long data sets of two wild honey bee (Apis mellifera) populations in the United States to reconstruct the evolution of tolerance to a novel parasite, the ectoparasitic mite Varroa destructor. Upon the arrival of Varroa, the two geographically isolated populations simultaneously suffered massive Varroa-induced mortality, but stabilized within two years. Here we sequenced and phased genomes of 465 bees sampled from both populations annually over the decade that spanned Varroa's arrival. Remarkably, we found that genetic changes were strongly correlated between the populations, suggesting parallel selective responses to Varroa parasitization. The arrival of Varroa was also correlated with an influx of genes of African origin into both populations, though surprisingly it did not substantially contribute to the overall similarity of the evolutionary response between them. Genes involved in metabolic, protein processing and developmental pathways were under particularly strong selection. It is possible that interactions among highly connected gene groups in these pathways may help channelize selective responses to novel parasites, causing completely unrelated populations to exhibit parallel evolutionary trajectories when faced with the same biotic pressure. Our analyses illustrate that ecologically relevant traits emerge from highly polygenic selection involving thousands of genes contributing to complex patterns of evolutionary change.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3