Automated long-term recording and analysis of neural activity in behaving animals

Author:

Dhawale Ashesh K.,Poddar Rajesh,Kopelowitz Evi,Normand Valentin,Wolff Steffen B. E.,Ölveczky Bence P.

Abstract

SummaryAddressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons during experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving animals. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Interneuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.HighlightsWe record neural activity and behavior in rodents continuously (24/7) over monthsAn automated spike-sorting method isolates and tracks single units over many weeksNeural dynamics and motor representations are highly stable over long timescalesNeurons cluster into functional groups based on their activity in different stateseTOC BlurbDhawale et al. describe experimental infrastructure for recording neural activity and behavior continuously over months in freely moving rodents. A fully automated spike-sorting algorithm allows single units to be tracked over weeks of recording. Recordings from motor cortex and striatum revealed a remarkable long-term stability in both single unit activity and network dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3