Abstract
AbstractThe nervous system is a central regulator of longevity, but how neuronal communication interfaces with ageing pathways is not well understood. Gap junctions are key conduits that allow voltage and metabolic signal transmission across cellular networks, yet it has remained unexplored whether they play a role in regulating ageing and longevity. We show that the innexin genes encoding gap junction subunits in Caenorhabditis elegans have extensive and diverse impacts on lifespan. Loss of the neural innexin unc-9 increases longevity by a third and also strongly benefits healthspan. Unc-9 acts specifically in a glutamatergic circuit linked to mechanosensation. Absence of unc-9 depends on a functional touch-sensing machinery to regulate lifespan and alters the age-dependent decline of mechanosensory neurons. The life extension produced by removal of unc-9 requires reactive oxygen species. Our work reveals for the first time that gap junctions are important regulators of ageing and lifespan.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献