Author:
Salehi-Ashtiani Kourosh,Lin Chenwei,Hao Tong,Shen Yun,Szeto David,Yang Xinping,Ghamsari Lila,Lee HanJoo,Fan Changyu,Murray Ryan R.,Milstein Stuart,Svrzikapa Nenad,Cusick Michael E.,Roth Frederick P.,Hill David E.,Vidal Marc
Abstract
Although a highly accurate sequence of the Caenorhabditis elegans genome has been available for 10 years, the exact transcript structures of many of its protein-coding genes remain unsettled. Approximately two-thirds of the ORFeome has been verified reactively by amplifying and cloning computationally predicted transcript models; still a full third of the ORFeome remains experimentally unverified. To fully identify the protein-coding potential of the worm genome including transcripts that may not satisfy existing heuristics for gene prediction, we developed a computational and experimental platform adapting rapid amplification of cDNA ends (RACE) for large-scale structural transcript annotation. We interrogated 2000 unverified protein-coding genes using this platform. We obtained RACE data for approximately two-thirds of the examined transcripts and reconstructed ORF and transcript models for close to 1000 of these. We defined untranslated regions, identified new exons, and redefined previously annotated exons. Our results show that as much as 20% of the C. elegans genome may be incorrectly annotated. Many annotation errors could be corrected proactively with our large-scale RACE platform.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献