Inferring the collective dynamics of neuronal populations from single-trial spike trains using mechanistic models

Author:

Donner ChristianORCID,Opper Manfred,Ladenbauer JosefORCID

Abstract

AbstractMulti-neuronal spike-train data recorded in vivo often exhibit rich dynamics as well as considerable variability across cells and repetitions of identical experimental conditions (trials). Efforts to characterize and predict the population dynamics and the contributions of individual neurons require model-based tools. Abstract statistical models allow for principled parameter estimation and model selection, but possess only limited interpretive power because they typically do not incorporate prior biophysical constraints. Here we present a statistically principled approach based on a population of doubly-stochastic integrate-and-fire neurons, taking into account basic biophysics. This model class comprises an idealized description for the dynamics of the neuronal membrane voltage in response to fast independent and slower shared input fluctuations. To efficiently estimate the model parameters and compare different model variants we compute the likelihood of observed single-trail spike trains by leveraging analytical methods for spiking neuron models combined with inference techniques for hidden Markov models. This allows us to reconstruct the shared input variations, classify their dynamics, obtain precise spike rate estimates, and quantify how individual neurons couple to the low-dimensional overall population dynamics, all from a single trial. Extensive evaluations based on simulated data show that our method correctly identifies the dynamics of the shared input process and accurately estimates the model parameters. Validations on ground truth recordings of neurons in vitro demonstrate that our approach successfully reconstructs the dynamics of hidden inputs and yields improved fits compared to a typical phenomenological model. Finally, we apply the method to a neuronal population recorded in vivo, for which we assess the contributions of individual neurons to the overall spiking dynamics. Altogether, our work provides statistical inference tools for a class of reasonably constrained, mechanistic models and demonstrates the benefits of this approach to analyze measured spike train data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3