Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis

Author:

Dowdell Adam,Paschke PeggyORCID,Thomason PeterORCID,Tweedy LukeORCID,Insall Robert H.ORCID

Abstract

AbstractNegative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use a combination of modelling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own, and only repels cells if it interacts with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay, or converging in an arbitrary place. More counterintuitively still, two chemicals can each attract cells on their own, but repel cells when combined together. We have thus identified a new mechanism that drives reverse chemotaxis, verified by mathematical models and experiments with real cells, and important anywhere several ligands compete for the same receptors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3