PDX3 is important for carbon/nitrogen balance in Arabidopsis associated with distinct environmental conditions

Author:

Steensma Priscille,Eisenhut Marion,Colinas MaiteORCID,Rosado-Souza Laise,Fernie Alisdair R.,Weber Andreas P. M.ORCID,Fitzpatrick Teresa B.ORCID

Abstract

ABSTRACTTo survive and proliferate in diverse environments with varying climate and nutrient availability, plants modulate their metabolism. Achieving a balance between carbon (C) and nitrogen (N) use such that growth and defense mechanisms can be appropriately controlled is critical for plant fitness. The identification of factors that regulate C/N utilization in plants can make a significant contribution to optimization of plant health. Here we show that pyridox(am)ine 5’-phosphate oxidase (PDX3), which regulates vitamin B6homeostasis, influences C/N balance. The B6vitamer imbalance resulting from loss of PDX3 leads to over-accumulation of nitrogenous compounds. A combination of increased glutamate dehydrogenase activity, impairment in the photorespiratory cycle and inappropriate use of endogenous ammonium fuel the metabolic imbalance. Growth at elevated CO2levels further exacerbates thepdx3phenotypes. Interestingly, serine supplementation rescues growth under high CO2likely bypassing the phosphorylated pathway of biosynthesis suggesting that this amino acid is an important commodity. We show that PDX3 function appears dispensable upon thermomorphogenesis, a condition that favors C metabolism. Furthermore, while a low ammonium to nitrate ratio likely accounts for overstimulation of salicylic acid (SA) defense responses inpdx3lines that compromises growth, a basal level of SA protects against loss of PDX3 biochemical function. Overall, the study highlights environmental scenarios where vitamin B6homeostasis, as managed by the salvage pathway enzyme PDX3, is critical and provides insight into how plants reprogram their metabolism under such conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3