Applying a computational transcriptomics-based drug repositioning pipeline to identify therapeutic candidates for endometriosis

Author:

Oskotsky Tomiko T,Bhoja Arohee,Bunis Daniel,Le Brian L,Kosti Idit,Li Christine,Houshdaran Sahar,Sen Sushmita,Vallvé-Juanico Júlia,Wang Wanxin,Arthurs Erin,Mahoney Lauren,Lang Lindsey,Gaudilliere Brice,Stevenson David K,Irwin Juan C,Giudice Linda C,McAllister Stacy,Sirota Marina

Abstract

AbstractEndometriosis is a common, inflammatory pain disorder comprised of disease in the pelvis and abnormal uterine lining and ovarian function that affects ∼200 million women of reproductive age worldwide and up to 50% of those with pelvic pain and/or infertility. Existing medical treatments for endometriosis-related pain are often ineffective, with individuals experiencing minimal or transient pain relief or intolerable side effects limiting long-term use - thus underscoring the pressing need for new drug treatment strategies. In this study, we applied a computational drug repurposing pipeline to endometrial gene expression data in the setting of endometriosis and controls in an unstratified manner as well as stratified by disease stage and menstrual cycle phase in order to identify potential therapeutics from existing drugs, based on expression reversal. Out of the 3,131 unique genes differentially expressed by at least one of six endometriosis signatures, only 308, or 9.8%, were in common. Similarities were more pronounced when looking at therapeutic predictions: 221 out of 299 drugs identified across the six signatures, or 73.9%, were shared, and the majority of predicted compounds were concordant across disease stage-stratified and cycle phase-stratified signatures. Our pipeline returned many known treatments as well as novel candidates. We selected the NSAID fenoprofen, the top therapeutic candidate for the unstratified signature and among the top-ranked drugs for the stratified signatures, for further investigation. Our drug target network analysis shows that fenoprofen targets PPARG and PPARA which affect the growth of endometrial tissue, as well as PTGS2 (i.e., COX2), an enzyme induced by inflammation with significantly increased gene expression demonstrated in patients with endometriosis who experience severe dysmenorrhea. NSAIDs are widely prescribed for endometriosis-related dysmenorrhea and nonmenstrual pelvic pain. Our analysis of clinical records across University of California healthcare systems revealed that while NSAIDs have been commonly prescribed to the 61,306 patients identified with diagnoses of endometriosis, dysmenorrhea, or chronic pelvic pain (36,543, 59.61%), fenoprofen was infrequently prescribed to those with these conditions (5, 0.008%). We tested the effect of fenoprofen in an established rat model of endometriosis and determined that it successfully alleviated endometriosis-associated vaginal hyperalgesia, a surrogate marker for endometriosis-related pain. These findings validate fenoprofen as a potential endometriosis therapeutic and suggest the utility of future investigation into additional drug targets identified.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3