Aberrant hierarchical prediction errors are associated with transition to psychosis: A computational single-trial analysis of the mismatch negativity

Author:

Hauke Daniel J.ORCID,Charlton Colleen E.ORCID,Schmidt AndréORCID,Griffiths JohnORCID,Woods Scott W.,Ford Judith M.ORCID,Srihari Vinod H.ORCID,Roth VolkerORCID,Diaconescu Andreea O.ORCID,Mathalon Daniel H.ORCID

Abstract

AbstractBackgroundMismatch negativity (MMN) reductions are among the most reliable biomarkers for schizophrenia and have been associated with increased risk for conversion to psychosis in individuals at clinical high risk for psychosis (CHR-P). Here, we adopt a computational approach to develop a mechanistic model of MMN reductions in CHR-P individuals and patients early in the course of schizophrenia (ESZ).MethodsElectroencephalography (EEG) was recorded in 38 CHR-P individuals (15 converters), 19 ESZ patients (≤5 years), and 44 healthy controls (HC) during three different auditory oddball MMN paradigms including 10% duration-, frequency-, or double-deviants, respectively. We modelled sensory learning with the hierarchical Gaussian filter and extracted precision-weighted prediction error trajectories from the model to assess how the expression of hierarchical prediction errors modulated EEG amplitudes over sensor space and time.ResultsBoth low-level sensory and high-level volatility precision-weighted prediction errors were altered in CHR-P and ESZ groups compared to HC. Furthermore, low-level precision-weighted prediction errors were significantly different in CHR-P that later converted to psychosis compared to non-converters.ConclusionsOur results implicate altered processing of hierarchical prediction errors as a computational mechanism in early psychosis consistent with predictive coding accounts of psychosis. This computational model appears to capture pathophysiological mechanisms relevant to early psychosis and the risk for future psychosis in CHR-P individuals, and may serve as a predictive biomarker and mechanistic target for novel treatment development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3