Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson’s disease

Author:

He Shenghong,Baig Fahd,Merla Anca,Torrecillos Flavie,Perera Andrea,Wiest ChristophORCID,Debarros Jean,Benjaber Moaad,Hart Michael GORCID,Morgante Francesca,Hasegawa Harutomo,Samuel Michael,Edwards Mark,Denison Timothy,Pogosyan Alek,Ashkan Keyoumars,Pereira Erlick,Tan Huiling

Abstract

AbstractSubthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) in people with Parkinson’s disease (PD) with less energy delivered to the brain and less stimulation induced side-effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over time periods of 400ms or longer in most previous ADBS studies. A shorter smoothing period could have the advantage of being more sensitive to changes in beta power which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400ms and a shorter 200ms smoothing window during reaching movements. Results from 13 people with PD showed that STN beta-triggered ADBS is effective in improving motor performance during reaching movements as it better preserves gamma oscillation than CDBS in people with PD, and that shortening the smoothing window does not result in any additional behavioural benefit. ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. When developing ADBS systems for PD, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3