How much data do we need? Lower bounds of brain activation states to predict human cognitive ability

Author:

Wehrheim Maren H.ORCID,Faskowitz JoshuaORCID,Sporns OlafORCID,Fiebach Christian J.ORCID,Kaschube MatthiasORCID,Hilger KirstenORCID

Abstract

AbstractHuman functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Despite their low frequency of occurrence, states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture (derived from resting-state fMRI) and to be highly subject-specific. However, it is currently unclear whether such network-defining states of high cofluctuation also contribute to individual variations in cognitive abilities – which strongly rely on the interactions among distributed brain regions. By introducing CMEP, an eigenvector-based prediction framework, we show that functional connectivity estimates from as few as 20 temporally separated time frames (< 3% of a 10 min resting-state fMRI scan) are significantly predictive of individual differences in intelligence (N= 281,p< .001). In contrast and against previous expectations, individual’s network-defining time frames of particularly high cofluctuation do not achieve significant prediction of intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N= 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest brain connectivity, temporally distributed information is necessary to extract information about cognitive abilities from functional connectivity time series. This information, however, is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.Significance StatementNeuroimaging has significantly contributed to our understanding about human cognition. Individual differences in cognitive ability can be assessed with intelligence tests and resulting scores predict important life outcomes. Previous research revealed that few states of high brain-wide connectivity determine individuals functional connectomes. We show that these states do not predict intelligence but identify alternative states which contain intelligence-predictive information. These states comprise a minimum of 20 time frames (< 3% of 10 min resting-state fMRI), include a distributed network of brain regions, and their temporal independence is a critical prerequisite. Means to find these states are relevant for future neuroimaging research on complex human traits and the here introduced prediction framework has potential for broad applications across scientific disciplines.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3