Biochemical activity is the default DNA state in eukaryotes

Author:

Luthra Ishika,Chen Xinyi E.,Jensen Cassandra,Rafi Abdul Muntakim,Salaudeen Asfar Lathif,de Boer Carl G.

Abstract

AbstractGenomes encode for genes and the regulatory signals that enable those genes to be transcribed, and are continually shaped by evolution. Genomes, including those of human and yeast, encode for numerous regulatory elements and transcripts that have limited evidence of conservation or function. Here, we sought to create a genomic null hypothesis by quantifying the gene regulatory activity of evolutionarily naïve DNA, using RNA-seq of evolutionarily distant DNA expressed in yeast and computational predictions of random DNA activity in human cells and tissues. In yeast, we found that >99% of bases in naïve DNA expressed as part of one or more transcripts. Naïve transcripts are sometimes spliced, and are similar to evolved transcripts in length and expression distribution, indicating that stable expression and/or splicing are insufficient to indicate adaptation. However, naïve transcripts do not achieve the extreme high expression levels as achieved by evolved genes, and frequently overlap with antisense transcription, suggesting that selection has shaped the yeast transcriptome to achieve high expression and coherent gene structures. In humans, we found that, while random DNA is predicted to have minimal activity, dinucleotide content-matched randomized DNA is predicted to have much of the regulatory activity of evolved sequences, including active chromatin marks at between half (DNase I and H3K4me3) and 1/16th (H3K27ac and H3K4me1) the rate of evolved DNA, and the repression-associated H3K27me3 at about twice the rate of evolved DNA. Naïve human DNA is predicted to be more cell type-specific than evolved DNA and is predicted to generate co-occurring chromatin marks, indicating that these are not reliable indicators of selection. However, extreme high activity is rarely achieved by naïve DNA, consistent with these arising via selection. Our results indicate that evolving regulatory activity from naïve DNA is comparatively easy in both yeast and humans, and we expect to see many biochemically active and cell type-specific DNA sequences in the absence of selection. Such naïve biochemically active sequences have the potential to evolve a function or, if sufficiently detrimental, selection may act to repress them.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3