CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning

Author:

Diekmann NicolasORCID,Vijayabaskaran SandhiyaORCID,Zeng Xiangshuai,Kappel David,Menezes Matheus ChavesORCID,Cheng SenORCID

Abstract

AbstractReinforcement learning (RL) has become a popular paradigm for modeling animal behavior, analyzing neuronal representations, and studying their emergence during learning. This development has been fueled by advances in understanding the role of RL in both the brain and artificial intelligence. However, while in machine learning a set of tools and standardized benchmarks facilitate the development of new methods and their comparison to existing ones, in neuroscience, the software infrastructure is much more fragmented. Even if sharing theoretical principles, computational studies rarely share software frameworks, thereby impeding the integration or comparison of different results. Machine learning tools are also difficult to port to computational neuroscience since the experimental requirements are usually not well aligned. To address these challenges we introduce CoBeL-RL, a closed-loop simulator of complex behavior and learning based on RL and deep neural networks. It provides a neuroscience-oriented framework for efficiently setting up and running simulations. CoBeL-RL offers a set of virtual environments, e.g. T-maze and Morris water maze, which can be simulated at different levels of abstraction, e.g. a simple gridworld or a 3D environment with complex visual stimuli, and set up using intuitive GUI tools. A range of RL algorithms, e.g. Dyna-Q and deep Q-network algorithms, is provided and can be easily extended. CoBeL-RL provides tools for monitoring and analyzing behavior and unit activity, and allows for fine-grained control of the simulation via interfaces to relevant points in its closed-loop. In summary, CoBeL-RL fills an important gap in the software toolbox of computational neuroscience.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , Levenberg, J. , Mané, D. , Monga, R. , Moore, S. , Murray, D. , Olah, C. , Schuster, M. , Shlens, J. , Steiner, B. , Sutskever, I. , Talwar, K. , Tucker, P. , Vanhoucke, V. , Vasudevan, V. , Viégas, F. , Vinyals, O. , Warden, P. , Wattenberg, M. , Wicke, M. , Yu, Y. , and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

2. Al-Rfou, R. , Alain, G. , Almahairi, A. , Angermueller, C. , Bahdanau, D. , Ballas, N. , Bastien, F. , Bayer, J. , Belikov, A. , Belopolsky, A. , Bengio, Y. , Bergeron, A. , Bergstra, J. , Bisson, V. , Bleecher Snyder, J. , Bouchard, N. , Boulanger-Lewandowski, N. , Bouthillier, X. , de Brébisson, A. , Breuleux, O. , Carrier, P.-L. , Cho, K. , Chorowski, J. , Christiano, P. , Cooijmans, T. , Côté, M.-A. , Côté, M. , Courville, A. , Dauphin, Y. N. , Delalleau, O. , Demouth, J. , Desjardins, G. , Dieleman, S. , Dinh, L. , Ducoffe, M. , Dumoulin, V. , Ebrahimi Kahou, S. , Erhan, D. , Fan, Z. , Firat, O. , Germain, M. , Glorot, X. , Goodfellow, I. , Graham, M. , Gulcehre, C. , Hamel, P. , Harlouchet, I. , Heng, J.-P. , Hidasi, B. , Honari, S. , Jain, A. , Jean, S. , Jia, K. , Korobov, M. , Kulkarni, V. , Lamb, A. , Lamblin, P. , Larsen, E. , Laurent, C. , Lee, S. , Lefrancois, S. , Lemieux, S. , Léonard, N. , Lin, Z. , Livezey, J. A. , Lorenz, C. , Lowin, J. , Ma, Q. , Manzagol, P.-A. , Mastropietro, O. , McGibbon, R. T. , Memisevic, R. , van Merriënboer, B. , Michalski, V. , Mirza, M. , Orlandi, A. , Pal, C. , Pascanu, R. , Pezeshki, M. , Raffel, C. , Renshaw, D. , Rocklin, M. , Romero, A. , Roth, M. , Sadowski, P. , Salvatier, J. , Savard, F. , Schlüter, J. , Schulman, J. , Schwartz, G. , Serban, I. V. , Serdyuk, D. , Shabanian, S. , Simon, E. , Spieckermann, S. , Subramanyam, S. R. , Sygnowski, J. , Tanguay, J. , van Tulder, G. , Turian, J. , Urban, S. , Vincent, P. , Visin, F. , de Vries, H. , Warde-Farley, D. , Webb, D. J. , Willson, M. , Xu, K. , Xue, L. , Yao, L. , Zhang, S. , and Zhang, Y. (2016). Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688.

3. Vector-based navigation using grid-like representations in artificial agents

4. A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice

5. Beattie, C. , Leibo, J. Z. , Teplyashin, D. , Ward, T. , Wainwright, M. , Küttler, H. , Lefrancq, A. , Green, S. , Valdés, V. , Sadik, A. , Schrittwieser, J. , Anderson, K. , York, S. , Cant, M. , Cain, A. , Bolton, A. , Gaffney, S. , King, H. , Hassabis, D. , Legg, S. , and Petersen, S. (2016). DeepMind Lab. arXiv:1612.03801 [cs]. arXiv: 1612.03801.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3