ATG9A facilitates the biogenesis of influenza A virus liquid condensates near the ER by dissociating recycling vesicles from microtubules

Author:

Vale-Costa Sílvia,Etibor Temitope Akghibe,Brás Daniela,Sousa Ana Laura,Amorim Maria JoãoORCID

Abstract

AbstractMany viruses that threaten public health establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes is key for the design of new antivirals. In the case of influenza A virus, liquid condensates known as viral inclusions are sites dedicated to the assembly of its 8-partite RNA genome. Liquid viral inclusions emerge near the endoplasmic reticulum (ER) exit sites, but we lack the molecular understanding on how the ER contributes to their biogenesis. We show here that viral inclusions develop at remodeled ER sites and display dynamic interactions using the ER, including fusion and fission events and sliding movements. We also uncover a novel role for the host factor, ATG9A, in mediating the exchange of viral inclusions between the ER and microtubules. Depletion of ATG9A arrests viral inclusions at microtubules and prevents their accumulation at the ER, leading to a significantly reduced production of viral genome complexes and infectious virions. In light of our recent findings, we propose that a remodeled ER supports the dynamics of liquid IAV inclusions, with ATG9A acting locally to facilitate their formation. This work advances our current knowledge regarding influenza genome assembly, but also reveals new roles for ATG9A beyond its classical involvement in autophagy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3