Cold and warmth intensify pain-linked sodium channel gating effects and persistent currents

Author:

Kriegeskorte SophiaORCID,Bott Raya,Hampl Martin,Korngreen AlonORCID,Hausmann RalfORCID,Lampert AngelikaORCID

Abstract

AbstractVoltage-gated sodium channels (Nav) are key players in excitable tissues with the capability to generate and propagate action potentials. Mutations in the genes encoding Navs can lead to severe inherited diseases, and some of these so-called channelopathies are showing temperature sensitive phenotypes, for example paramyotonia congenita, Brugada-syndrome, febrile seizure syndromes and inherited pain syndromes like erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). Nevertheless, most investigations of mutation-induced gating effects were conducted at room temperature and thus the role of cooling or warming in channelopathies remains poorly understood. Here, we investigated the temperature sensitivity of four Navsubtypes: Nav1.3, Nav1.5, Nav1.6, and Nav1.7 and two mutations in Nav1.7 causing IEM (Nav1.7/L823R) and PEPD (Nav1.7/I1461T), using an automated patch clamp system. Our experiments at 15 °C, 25 °C and 35 °C revealed a shift of the voltage dependence of activation to more hyperpolarized potentials with increasing temperature for all investigated subtypes. Nav1.3 exhibited strongly slowed inactivation kinetics compared to the other subtypes that resulted in enhanced persistent current especially at 15 °C, indicating a possible role in cold induced hyperexcitability. Impaired fast inactivation of Nav1.7/I1461T was significantly enhanced by cooling temperature to 15 °C. The subtype specific modulation as well as the intensified mutation induced gating changes stress the importance to consider temperature as regulator for channel gating and its impact on cellular excitability as well as disease phenotypes.SummaryActivation of the sodium channel subtypes Nav1.3, Nav1.5, Nav1.6, and Nav1.7 and two pain linked mutations is alleviated by warmth. Cooler temperatures, on the other hand, strongly enhance persistent currents of Nav1.3. The impaired fast inactivation of the pain-linked Nav1.7/I1461T mutation is further impaired by cooling, mimicking clinical findings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3