Targeting Damaged Collagen for Intra-Articular Delivery of Therapeutics using Collagen Hybridizing Peptides

Author:

Luke E. N.,Na Bhuket P. Ratnatilaka,Yu S. M.,Weiss J. A.ORCID

Abstract

AbstractThe objective of this study was to investigate the potential of collagen hybridizing peptides (CHPs), which bind to denatured collagen, to extend the retention time of near-infrared fluorophores (NIRF) following intra-articular (IA) injection in rat knee joints. CHPs were synthesized with a NIRF conjugated to N-terminus. Male Sprague-Dawley rats were assigned to one of four experimental groups: healthy, CHP; osteoarthritis (OA), CHP; healthy, scrambled-sequence CHP (sCHP), which has no collagen binding affinity; or OA, sCHP. Animals in the OA groups received an IA injection of monosodium iodoacetate to induce OA. All animals then received the corresponding CHP injection. Animals were imaged repeatedly over two weeks using anin vivofluorescence imaging system. Joint components were isolated and imaged to determine CHP binding distribution. Safranin-O and Fast Green histological staining was performed to confirm the development of OA. CHPs were found to be retained within the joint following IA injection in both healthy and OA animals for the full study period. In contrast, sCHPs were cleared within 24-48 hours. CHP signal was significantly greater (p<0.05) in OA joints when compared to healthy joints. At the two-week end point, multiple joint components retained CHPs, including cartilage, meniscus, and synovium. CHPs extended the retention time of NIRFs following IA injection in healthy and OA knee joints by binding to multiple collagenous tissues in the joint. These results support the pursuit of further research on CHP based therapeutics for IA treatment of OA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3