Whole-genome sequencing reveals diverse mechanisms underlying quantitative pathogenicity and host adaptation in a fungal plant pathogen

Author:

Amezrou RedaORCID,Ducasse Aurélie,Compain Jérôme,Lapalu Nicolas,Pitarch Anais,Dupont Laetitia,Confais JohannORCID,Goyeau HenrietteORCID,Kema Gert HJORCID,Croll DanielORCID,Amselem JoëlleORCID,Sanchez-Vallet AndreaORCID,Marcel Thierry CORCID

Abstract

AbstractKnowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. However, the genetic architecture of fungal pathogenicity remains poorly understood, and studies often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative pathogens. Here, we used theZymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation.Z. triticiis a globally occurring pathogen that causes severe yield losses on wheat. We perform whole-genome sequencing of 103 isolates and quantified pathogenicity traits on 12 cultivars harbouring different resistance genes. We perform a multi-host GWAS and identified 58 candidate genes associated with pathogenicity, of which nineteen are highly expressed and/or differentially expressedin planta. Two of these had large effects and three were shared in more than one cultivar, suggesting thatZ. triticipathogenicity is predominantly quantitative and host-specific. Analysis of genetic diversity revealed that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable elements dynamics. We found signatures of positive diversifying selection in ∼68% of the candidate genes acting on specific amino acid substitutions, likely responsible for evasion of host recognition. Finally, we used functional approaches to confirm the role of an effector-like gene and a methyltransferase in quantitative pathogenicity. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3