CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin

Author:

van Schie Janne J.M.,de Lint Klaas,Molenaar Thom M.,Gines Macarena Moronta,Balk Jesper A.,Rooimans Martin A.,Roohollahi Khashayar,Pai Govind M.,Borghuis Lauri,Ramadhin Anisha R.,Dorsman Josephine C.,Wendt Kerstin S.,Wolthuis Rob M.F.,de Lange Job

Abstract

ABSTRACTThe cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by active DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, by using synthetic lethality CRISPR screens in isogenic human cell lines defective of specific cohesion regulators, we mapped the genetic dependencies induced by absence of DDX11 or ESCO2. The obtained high confidence synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identified the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravated cohesion defects in ESCO2 defective cells, leading to mitotic cell death. PAXIP1 promoted the global chromatin association of cohesin, independent of DNA replication, a function that could not be explained by indirect effects of PAXIP1 on transcription or the DNA damage response. Cohesin regulation by PAXIP1 required its binding partner PAGR1 and a conserved FDF motif in PAGR1. Similar motifs were previously found in multiple cohesin regulators, including CTCF, to mediate physical interactions with cohesin. PAXIP1 co-localizes with cohesin on multiple genomic loci, including at active gene promoters and enhancers. Together, this study identifies the PAXIP1-PAGR1 complex as a novel regulator of cohesin occupancy on chromatin. Possibly, this role in cohesin regulation is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3