miR472 deficiency enhancesArabidopsis thalianadefence without reducing seed production

Author:

Vasseur Francois,Baldrich PatriciaORCID,Jiménez-Góngora Tamara,Villar-Martin Luis,Weigel DetlefORCID,Rubio-Somoza IgnacioORCID

Abstract

AbstractAfter having co-existed in plant genomes for at least 200 million years, the products of microRNA (miRNA) and Nucleotide-Binding Leucine Rich Repeat protein (NLR) genes formed a regulatory relationship in the common ancestor of modern gymnosperms and angiosperms. From then on, DNA polymorphisms occurring at miRNA target sequences within NLR transcripts must have been compensated by mutations in the corresponding mature miRNA sequence, therefore maintaining that regulatory relationship. The potential evolutionary advantage of such regulation remains largely unknown and might be related to two mutually non-exclusive scenarios: miRNA-dependent regulation of NLR levels might prevent defence mis-activation with negative effects on plant growth and reproduction; or reduction of active miRNA levels in response to pathogen derived molecules (PAMPS and silencing suppressors) might rapidly release otherwise silent NLR transcripts for rapid translation and thereby enhance defence. Here, we usedArabidopsis thalianaplants deficient for miR472 function to study the impact of releasing its NLR targets on plant growth and reproduction and on defence against the fungal pathogenPlectospharaella cucumerina. We show that miR472 regulation has a dual role, participating both in the tight regulation of plant defence and growth. MIM472 lines, with reduced active miR472, are more resistant to pathogens and, correlatively, have reduced relative growth compared to wild-type plants. However, despite MIM472 lines flower at the same time than their wild-type, the end of their reproductive phase is delayed, and they exhibit higher adult biomass, resulting in similar seed yield as the wild-type. Our study highlights how negative consequences of defence activation might be compensated by changes in phenology and that miR472 reduction is an integral part of plant defence responses.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3