A patterned human heart tube organoid model generated by pluripotent stem cell self-assembly

Author:

Volmert Brett,Riggs Ashlin,Wang Fei,Juhong Aniwat,Kiselev Artem,Kostina Aleksandra,O’Hern Colin,Muniyandi Priyadharshni,Wasserman Aaron,Huang Amanda,Lewis-Israeli Yonatan,Park SangbumORCID,Qiu Zhen,Zhou ChaoORCID,Aguirre AitorORCID

Abstract

AbstractHuman pluripotent stem cells can recapitulate significant features of mammalian organ developmentin vitro, including key aspects of heart development. We hypothesized that the organoids thus created can be made substantially more relevant by mimicking aspects ofin uterogestation, leading to higher physiological and anatomical resemblance to theirin vivocounterparts. Here, we report steps towards generating developmentally inspired maturation methodologies to differentiate early human heart organoids into patterned heart-tube-like structures in a reproducible and high-throughput fashion by complete self-organization. The maturation strategy consists of the controlled and stepwise exposure to metabolic (glucose, fatty acids) and hormonal signals (T3, IGF-1) as present during early heart development. These conditions elicit important transcriptomic, cellular, morphological, metabolomic, and functional changes over a 10-day period consistent with continuously increasing heart complexity, maturation, and patterning. Our data reveals the emergence of atrial and ventricular cardiomyocyte populations, valvular cells, epicardial cells, proepicardial-derived cells, endothelial cells, stromal cells, conductance cells, and cardiac progenitors, all of them cell types present in the primitive heart tube. Anatomically, the organoids elongate and develop well-differentiated atrial and ventricular chambers with compacted myocardial muscle walls and a proepicardial organ. For the first time in a completely self-organizing heart organoid, we show anterior-posterior patterning due to an endogenous retinoic acid gradient originating at the atrial pole, where proepicardial and atrial populations reside, mimicking the developmental process present within the primitive heart tube. Collectively, these findings highlight the ability of self-organization and developmental maturation strategies to recapitulate human heart development. Our patterned human heart tube model constitutes a powerfulin vitrotool for dissecting the role of different cell types and genes in human heart development, as well as disease modeling congenital heart defects, and represents a step forward in creating fully synthetic human hearts.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3