Leaf gene expression trajectories during the growing season are consistent between sites and years in American beech

Author:

Sezen U. UzayORCID,Shue Jessica E.ORCID,Worthy Samantha J.ORCID,Davies Stuart J.ORCID,McMahon Sean M.ORCID,Swenson Nathan G.ORCID

Abstract

AbstractTranscriptomics, the quantification of gene expression, provides a versatile tool for ecological monitoring. Here, we show that through genome-guided profiling of transcripts mapping to 33,042 loci, gene expression differences can be discerned among multi-year and seasonal leaf samples collected from American beech trees at two latitudinally separated sites. Despite a bottleneck imposed due to large-scale post-Columbian deforestation, the SNP-based population genetic background analysis has yielded sufficient variation to account for differences between populations and among individuals. Our time series of expression analyses during spring-summer and summer-fall transitions for two consecutive years involved 4197 differentially expressed protein coding genes. A global comparison of 12 seasons has revealed that spring gene expression sets the pace for the rest of the growing season. UsingPopulusorthologs of the differentially expressed genes, we reconstructed a protein-protein interactome as a representation of the leaf physiological states of trees during the seasonal transitions. Gene set enrichment analysis revealed GO terms that highlight molecular functions and biological processes possibly influenced by abiotic forcings such as recovery from drought and response to excess precipitation. Further, based on 324 co-regulated transcripts, we focused on a subset of terms that could be putatively attributed to phenological shifts due to late spring. Our conservative results indicate that extended transcriptome-based monitoring of forests can capture ranges of responses arising from other factors including air quality, chronic disease as well as herbivore outbreaks that require activation and/or downregulation of genes collectively tuning reaction norms needed for the survival of long living trees such as the American beech.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3