Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential

Author:

Markin AlexeyORCID,Zanella Giovana Ciacci,Arendsee Zebulun W.,Zhang Jianqiang,Krueger Karen M.,Gauger Phillip C.,Vincent Baker Amy L.ORCID,Anderson Tavis K.ORCID

Abstract

AbstractThe 2009 H1N1 pandemic (pdm09) lineage of influenza A virus (IAV) crosses interspecies barriers with frequent human-to-swine spillovers each year. These spillovers reassort and drift within swine populations, leading to genetically and antigenically novel IAV that represent a zoonotic threat. We quantified interspecies transmission of the pdm09 lineage, persistence in swine, and identified how evolution in swine impacted zoonotic risk. Human and swine pdm09 case counts between 2010 and 2020 were correlated and human pdm09 burden and circulation directly impacted the detection of pdm09 in pigs. However, there was a relative absence of pdm09 circulation in humans during the 2020-21 season that was not reflected in swine. During the 2020-21 season, most swine pdm09 detections originated from human-to-swine spillovers from the 2018-19 and 2019-20 seasons that persisted in swine. We identified contemporary swine pdm09 representatives of each persistent spillover and quantified cross-reactivity between human seasonal H1 vaccine strains and the swine strains using a panel of monovalent ferret antisera in hemagglutination inhibition (HI) assays. The swine pdm09s had variable antigenic reactivity to vaccine antisera, but each swine pdm09 clade exhibited significant reduction in cross-reactivity to one or more of the human seasonal vaccine strains. Further supporting zoonotic risk, we showed phylogenetic evidence for 17 swine-to-human transmission events of pdm09 from 2010 to 2021, 11 of which were not previously classified as variants, with each of the zoonotic cases associated with persistent circulation of pdm09 in pigs. These data demonstrate that reverse-zoonoses and evolution of pdm09 in swine results in viruses that are capable of zoonotic transmission and represent a potential pandemic threat.Author SummaryThe diversity and evolution of influenza A virus (IAV) in pigs is linked to the emergence of IAV with pandemic potential. Human-to-swine transmission of the 2009 H1N1 pandemic (pdm09) IAV lineage repeatedly occurred across the past decade and has increased genetic diversity in pigs: sporadic swine-to-human cases are associated with these viruses. We measured the frequency of human-to-swine transmission of the H1N1 pandemic IAV lineage between 2009 and 2021 and determined how this affected the diversity of IAV in swine and zoonotic risk. We detected 371 separate human-to-swine spillovers, with the frequency of interspecies transmission increasing when the burden of IAV was highest in the human population. Most spillovers were single events without sustained transmission, but a small subset resulted in the emergence, persistence, and cocirculation of different pdm09 genetic clades in US pigs. Each of the pdm09 representative of different persistent spillovers was genetically and antigenically different from human seasonal vaccine strains. The persistence of pdm09 within pigs resulted in at least five recent swine-to-human transmission events. These data suggest that controlling IAV infection in humans working with swine can minimize spillover into pigs, reduce resulting genetic diversity of IAV in pigs, and proactively reduce the potential for swine-to-human transmission of IAV with pandemic potential.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Swine Influenza A Viruses and the Tangled Relationship with Humans

2. octoFLUshow: an Interactive Tool Describing Spatial and Temporal Trends in the Genetic Diversity of Influenza A Virus in US Swine;Microbiology Resource Announcements,2021

3. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection

4. Zeller, M. A. , Chang, J. , Vincent, A. L. , Gauger, P. C. & Anderson, T. K. Spatial and Temporal Coevolution of N2 Neuraminidase and H1 and H3 Hemagglutinin Genes of Influenza A Virus in United States Swine. Virus Evolution (2021).

5. Antigenic distance between North American swine and human seasonal H3N2 influenza A viruses as an indication of zoonotic risk to humans;Journal of virology,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3