Building Large-Scale Registries from Unstructured Clinical Notes using a Low-Resource Natural Language Processing Pipeline

Author:

Tavabi NazgolORCID,Pruneski JamesORCID,Golchin Shahriar,Singh MallikaORCID,Sanborn RyanORCID,Heyworth BentonORCID,Kimia AmirORCID,Kiapour AtaORCID

Abstract

AbstractBuilding clinical registries is an important step in improving the quality and safety of patient care. With the growing size of medical records, manual abstraction becomes more and more infeasible and impractical. On the other hand, Natural Language Processing Techniques have shown promising results in extracting valuable information from unstructured clinical notes. However, the structure and nature of clinical notes are very different from regular text that state-of-the-art NLP models are trained and tested on and they have their own set of challenges. In this study, we propose SE-K, an efficient and interpretable classification approach for extracting information from clinical notes, and show that it outperforms current state-of-the-art models in text classification. We use this approach to generate a 20-year comprehensive registry of anterior cruciate ligament reconstruction operations, one of the most common orthopedics operations among children and young adults. This registry can help us better understand the outcomes of this surgery and identify potential areas for improvement which can ultimately lead to better treatment outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3