Development and Validation of a Machine Learning Algorithm to Classify Lower Urinary Tract Symptoms

Author:

Chiang Jeffrey N.,Dallas Kai B.ORCID,Caron Ashley T.ORCID,Anger Jennifer T.ORCID,Kaufman Melissa R.ORCID,Ackerman A. LenoreORCID

Abstract

AbstractObjectiveLower urinary tract symptoms (LUTS), such as urinary urgency, frequency, and incontinence, affect the majority of the population, causing substantial morbidity, yet few receive effective care. Sizeable symptomatic overlap between LUTS categories leads to high rates of misdiagnosis. To improve diagnostic accuracy, we sought to employ machine learning approaches to LUTS categorization to generate diagnostic groupings based on patient-reported clinical data, creating a novel tool for diagnosis of patients with voiding complaints.MethodsQuestionnaire responses in a Development Dataset of 514 female subjects were used for model development, identifying 4 major clusters and 9 specific phenotypes of LUTS using agglomerative hierarchical clustering. Each cluster and phenotype was assigned a clinical identity consistent with recognized causes of voiding dysfunction by the consensus of two urologic specialists. Then, a random forest classifier was trained to assign unseen patients into these phenotypes. That model was then applied to a Validation Dataset of 571 additional subjects to confirm the diagnostic algorithm.ResultsThis data-driven, hierarchical clustering approach captured overlapping symptoms inherent in typical patients, recognizing common uncomplicated diagnoses (i.e., overactive bladder) as well as several underrecognized diagnostic categories (i.e., myofascial pelvic pain). A diagnostic algorithm derived by supervised machine learning to assign unseen subjects into these phenotypes demonstrated good reproducibillty of the phenotypes and their symptomatic patterns in an independent Validation Dataset.ConclusionsWe describe the generation of a machine learning algorithm relying only on validated, patient-reported symptoms for diagnostic classification. Given a growing physician shortage and increasing challenges for patients accessing specialist care, this type of digital technology holds great potential to improve the recognition and diagnosis of functional urologic conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3