Supercomputers and Reverse Engineering of Motoneuron Firing Patterns

Author:

Chardon Matthieu K.ORCID,Wang Y. CurtisORCID,Garcia Marta,Besler EmreORCID,Beauchamp J. AndrewORCID,D’Mello Michael,Powers Randall K.,Heckman Charles J.ORCID

Abstract

AbstractIn this study, we achieved a major step forward in the analysis of firing patterns of populations of motoneurons, through remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. The ability to implement these extensive parameter searches seem ideally matched to understanding the many parameters that define the inputs to neuron populations that generate these patterns. Therefore, we investigated the feasibility of using supercomputer-based models of spinal motoneurons as a basis for reverse engineering (RE) their firing patterns to identify the organization of their inputs, which we defined as the amplitudes and patterns of excitation, inhibition, and neuromodulation. This study combines two advances: 1) highly-realistic motoneuron models based on extensive in situ voltage and current clamp studies focused on neuromodulatory actions, and 2) implementation of these models using the Laboratory Computing Resource Center at Argonne National Laboratory to carry thousands (soon millions) of simulations simultaneously. The goal for computing and performing RE on over 300,000 combinations of excitatory, inhibitory, and neuromodulatory inputs was twofold: 1) to estimate the synaptic input to the motoneuron pool and 2) to generate training data for identifying the excitatory, inhibitory, and neuromodulatory inputs based on output firing patterns. As with other neural systems, any given motoneuron firing pattern could potentially be non-unique with respect to the excitatory, inhibitory, and neuromodulatory input combination (many input combinations produce similar outputs). However, our initial results show that the neuromodulatory input makes the motoneuron input-output properties so nonlinear that the effective RE solution space is restricted. The RE approach we demonstrate in this work is successful in generating estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation with variances accounted for ranging from 75% to 90%. It was striking that the nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing power of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions;In: The Journal of physiology,1929

2. Distribution of 5-hydroxytryptamine-immunoreactive boutons on α-motoneurons in the lumbar spinal cord of adult cats;In: Journal of Comparative Neurology,1998

3. A computational approach for generating continuous estimates of motor unit discharge rates and visualizing population discharge characteristics;In: Journal of Neural Engineering,2022

4. Beauchamp, James A , Gregory EP Pearcey , et al. (2022). “A geometric approach to quantifying the neuromodulatory effects of persistent inward currents on single motor unit discharge patterns”. In: bioRxiv.

5. Balanced inhibition and excitation drive spike activity in spinal half-centers;In: Science,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3