Waterlogging shifts ontogenic hormone dynamics in tomato leaves and petioles

Author:

Geldhof B.ORCID,Novák O.ORCID,Van de Poel B.ORCID

Abstract

AbstractWaterlogging leads to hypoxic conditions in the root zone that subsequently cause systemic adaptive responses in the shoot, including leaf epinasty. Waterlogging-induced epinasty in tomato has long been ascribed to the coordinated action of ethylene and auxins. However, other hormonal signals have largely been neglected, despite evidence of their importance in leaf posture control. To adequately cover a large group of growth regulators, we performed a tissue-specific and time-dependent hormonomics analysis. This analysis revealed that multiple hormones are differentially affected throughout a 48 h waterlogging treatment, and, more importantly, that leaf development defines a framework in which this hormonal control is regulated. In addition, we could distinguish early hormonal signals that might contribute to fast responses towards oxygen deprivation from those that potentially sustain the waterlogging response. For example, abscisic acid (ABA) levels peak in petioles within the first 12 h of the treatment, while its metabolites only rise much later, suggesting ABA transport is altered. At the same time, cytokinins (CK) and their derivatives drastically decline during waterlogging in leaves of all ages. This drop in CK possibly releases the inhibition of ethylene and auxin mediated cell elongation to establish epinastic bending. Auxins themselves rise substantially in the petiole of mature leaves, but mostly after 48 h of root hypoxia. Based on our hormone profiling, we propose that ethylene and ABA might act synergistically to dynamically fine-tune the balance of IAA and CK in the petiole, ultimately leading to differential growth and epinasty during waterlogging.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3