A monkeypox mRNA-lipid nanoparticle vaccine targeting virus binding, entry, and transmission drives protection against lethal orthopoxviral challenge

Author:

Freyn Alec W.,Atyeo Caroline,Earl Patricia L.,Americo Jeffrey L.,Chuang Gwo-Yu,Natarajan Harini,Frey Tiffany,Gall Jason,Moliva Juan I,Hunegnaw Ruth,Arunkumar Guha Asthagiri,Ogega Clinton,Nasir Arshan,Bennett Hamilton,Johnson Joshua,Durney Michael A.,Stewart-Jones Guillaume,Hooper Jay W,Colpitts Tonya,Alter GalitORCID,Sullivan Nancy J.,Carfi Andrea,Moss Bernard

Abstract

AbstractMonkeypox virus (MPXV) caused a global outbreak in 2022, fueled by behaviorally-altered and enhanced human-to-human transmission. While smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the imminent threat of additional zoonotic events as well as the virus’ evolving ability to drive human-to-human transmission, there is an urgent need for the development of a MPXV-specific vaccine that is able to also confer broad protection against evolving strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared to Modified Vaccinia Virus Ankara (MVA), which forms the basis for the current MPXV vaccine, mRNA-vaccination generated superior neutralizing and cellular spread-inhibitory activities against MPXV and VACV as well as greater Fc-effector Th1-biased humoral immunity to the four MPXV antigens and the four VACV homologs. Single MPXV antigen mRNA vaccines provided partial protection against VACV challenge, while combinations of two, three or four MPXV antigen expressing mRNAs protected against disease-related weight loss and death. Remarkably, the cross-protection by multivalent MPXV mRNAs was superior to the homologous protection by MVA, associated with a combination of neutralizing and non-neutralizing antibody functions. These data reveal robust protection against VACV using an mRNA-based vaccine targeting four highly conserved viral surface antigens, linked to the induction of highly functional antibodies able to rapidly control viral infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3