Hypergraphs and centrality measures identifying key features in gene expression data

Author:

Barton SamuelORCID,Broad ZoeORCID,Ortiz-Barrientos DanielORCID,Donovan DianeORCID,Lefevre JamesORCID

Abstract

AbstractMultidisciplinary approaches can significantly advance our understanding of complex systems. For instance, gene co-expression networks align prior knowledge of biological systems with studies in graph theory, emphasising pairwise gene to gene interactions. In this paper, we extend these ideas, promoting hypergraphs as an investigative tool for studying multi-way interactions in gene expression data. Additional freedoms are achieved by representing individual genes with hyperedges, and simultaneous testing each gene against many features/vertices. Further gene/hyperedge interactions can be captured and explored using the line graph representations, a techniques that also reduces the complexity of dense hypergraphs. Such an approach provides access to graph centrality measures, which in turn identify salient features within a data set, for instance dominant or hub-like hyperedges leading to key knowledge on gene expression. The validity of this approach is established through the study of gene expression data for the plant speciesSenecio lautusand results will be interpreted within this biological setting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3