Abstract
AbstractA 19-amino acid longproline-richantimicrobialpeptide (PrAMP) Drosocin (Dro) is encoded in the fruit fly genome. Native Dro is glycosylated at a specific threonine residue, but the non-glycosylated peptide retains antibacterial activity. Dro shows sequence similarity to several other PrAMPs that bind in the ribosomal nascent peptide exit tunnel and inhibit protein synthesis by varying mechanisms. However, the target and mechanism of action of Dro remain unknown. Here we show that the primary mode of Dro action is inhibition of termination of protein synthesis. Our in vitro and in vivo experiments demonstrate that Dro stalls ribosomes at stop codons, likely sequestering class 1 release factors associated with the terminating ribosome. As the result, Dro strongly promotes readthrough of stop codons at subinhibitory concentrations. The elucidated mode of Dro action allows assigning it as the second member of the type II PrAMPs, of which only one representative, the antimicrobial peptide apidaecin (Api) produced by honeybees, was previously known. However, despite its functional similarity with Api, Dro interacts with the target in a markedly distinct way. The analysis of a comprehensive single-amino acid substitution library of endogenously expressed Dro variants shows that binding to the ribosome involves interactions of multiple amino acid residues distributed through the entire length of the PrAMP. Our data further show that the ribosome-targeting activity of non-glycosylated Dro can be significantly enhanced by single amino acid substitutions illuminating directions for improving its antibacterial properties.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献