Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics
Author:
Qiu XiaojieORCID, Zhu Daniel Y., Yao Jiajun, Jing Zehua, Zuo Lulu, Wang Mingyue, Min Kyung Hoi (Joseph), Pan Hailin, Wang Shuai, Liao Sha, Lai Yiwei, Hao Shijie, Lu Yuancheng Ryan, Hill Matthew, Martin-Rufino Jorge D., Weng Chen, Riera-Escandell Anna Maria, Chen Mengnan, Wu Liang, Zhang YongORCID, Wei Xiaoyu, Li Mei, Huang Xin, Xiang Rong, Yang Zhuoxuan, Liu Chao, Xia Tianyi, Liang Yingxin, Xu Junqiang, Hu Qinan, Hu Yuhui, Zhu Hongmei, Li Yuxiang, Chen Ao, Esteban Miguel A., Gu Ying, Lauffenburger Douglas A., Xu Xun, Liu Longqi, Weissman Jonathan S., Liu Shiping, Bai Yinqi
Abstract
Cells do not live in a vacuum, but in a milieu defined by cell–cell communication that can be measured via emerging high-resolution spatial transcriptomics approaches. However, analytical tools that fully leverage such data for kinetic modeling remain lacking. Here we present Spateo (aristoteleo/spateo-release), a general framework for quantitative spatiotemporal modeling of single-cell resolution spatial transcriptomics. Spateo delivers novel methods for digitizing spatial layers/columns to identify spatially-polar genes, and develops a comprehensive framework of cell-cell interaction to reveal spatial effects of niche factors and cell type-specific ligand-receptor interactions. Furthermore, Spateo reconstructs 3D models of whole embryos, and performs 3D morphometric analyses. Lastly, Spateo introduces the concept of “morphometric vector field” of cell migrations, and integrates spatial differential geometry to unveil regulatory programs underlying various organogenesis patterns of Drosophila. Thus, Spateo enables the study of the ecology of organs at a molecular level in 3D space, beyond isolated single cells.
Publisher
Cold Spring Harbor Laboratory
Reference137 articles.
1. Albergante, L. , Mirkes, E. , Bac, J. , Chen, H. , Martin, A. , Faure, L. , Barillot, E. , Pinello, L. , Gorban, A. , and Zinovyev, A. (2020). Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph. Entropy 22. https://doi.org/10.3390/e22030296. 2. Alon, S. , Goodwin, D.R. , Sinha, A. , Wassie, A.T. , Chen, F. , Daugharthy, E.R. , Bando, Y. , Kajita, A. , Xue, A.G. , Marrett, K. , et al. (2021). Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems . Science 371. https://doi.org/10.1126/science.aax2656. 3. Amamoto, R. , Huerta, V.G.L. , Takahashi, E. , Dai, G. , Grant, A.K. , Fu, Z. , and Arlotta, P. (2016). Adult axolotls can regenerate original neuronal diversity in response to brain injury. Elife 5. https://doi.org/10.7554/eLife.13998. 4. Anselin, L. (2019). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. Spatial Analytical Perspectives on GIS 111–126. https://doi.org/10.1201/9780203739051-8. 5. Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis;Cell Rep,2019
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|