Phenotype-based single-cell transcriptomics reveal compensatory pathways involved in Golgi organization and associated transport

Author:

Singh SanjanaORCID,Zukowska JoannaORCID,Halavatyi AliaksandrORCID,Landry Jonathan J. M.ORCID,Pepperkok RainerORCID

Abstract

AbstractThe Golgi is a dynamic organelle with a unique morphology that has implications on its function. How the structural integrity of the Golgi is maintained despite its dynamic nature has been a long-standing question. Several siRNA-based screens have addressed this question and have identified a number of key players required for Golgi integrity. Interestingly, they also reported heterogeneity of phenotypic responses with regards to Golgi morphology. Although never systematically investigated, this variability has generally been attributed to poor transfection efficiency or cell cycle specific responses. Here we show that this heterogeneity is the result of differential response to the siRNA knockdown in different Golgi phenotypes, independent of transfection efficiency or cell cycle phases. To characterize the observed Golgi phenotype-specific responses at the molecular level we have developed an automated assay which enables microscopy-based phenotype classification followed by phenotype-specific single-cell transcriptome analysis. Application of this novel approach to the siRNA mediated knockdown of USO1, a key trafficking protein at the ER to Golgi boundary, surprisingly suggests a key involvement of the late endosomal/endocytic pathways in the regulation of Golgi organization. Our pipeline is the first of its kind developed to study Golgi organization, but can be applied to any biological problem that stands to gain from correlating morphology with single-cell readouts. Moreover, its automated and modular nature allows for uncomplicated scaling up, both in throughput and in complexity, helping the user achieve a systems level understanding of cellular processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3