Chimeric U-Net – Modifying the standard U-Net towards Explainability

Author:

Schulze Kenrick,Peppert Felix,Schütte Christof,Sunkara VikramORCID

Abstract

Healthcare guided by semantic segmentation has the potential to improve our quality of life through early and accurate disease detection. Convolutional Neural Networks, especially the U-Net-based architectures, are currently the state-of-the-art learningbased segmentation methods and have given unprecedented performances. However, their decision-making processes are still an active field of research. In order to reliably utilize such methods in healthcare, explainability of how the segmentation was performed is mandated. To date, explainability is studied and applied heavily in classification tasks. In this work, we propose the Chimeric U-Net, a U-Net architecture with an invertible decoder unit, that inherently brings explainability into semantic segmentation tasks. We find that having the restriction of an invertible decoder does not hinder the performance of the segmentation task. However, the invertible decoder helps to disentangle the class information in the latent space embedding and to construct meaningful saliency maps. Furthermore, we found that with a simple k-Nearest-Neighbours classifier, we could predict the Intersection over Union scores of unseen data, demonstrating that the latent space, constructed by the Chimeric U-Net, encodes an interpretable representation of the segmentation quality. Explainability is an emerging field, and in this work, we propose an alternative approach, that is, rather than building tools for explaining a generic architecture, we propose constraints on the architecture which induce explainability. With this approach, we could peer into the architecture to reveal its class correlations and local contextual dependencies, taking an insightful step towards trustworthy and reliable A.I.Code to build and utilize the Chimeric U-Net is made available under:https://github.com/kenrickschulze/Chimeric-UNet---Half-invertible-UNet-in-Pytorch

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3