State-of-the-art image and video quality assessment with a metric based on an intrinsically nonlinear neural summation model

Author:

Luna Raúl,Zabaleta Itziar,Bertalmío Marcelo

Abstract

AbstractThe development of automatic methods for image and video quality assessment that correlate well with the perception of human observers is a very challenging open problem in vision science, with numerous practical applications in disciplines such as image processing and computer vision, as well as in the media industry. In the past two decades, the goal of image quality research has been to improve upon classical metrics by developing models that emulate some aspects of the visual system, and while the progress has been considerable, state-of-the-art quality assessment methods still share a number of shortcomings, like their performance dropping considerably when they are tested on a database that is quite different from the one used to train them, or their significant limitations in predicting observer scores for high framerate videos. In this work we propose a novel objective method for image and video quality assessment that is based on the recently introduced Intrinsically Non-linear Receptive Field (INRF) formulation, a neural summation model that has been shown to be better at predicting neural activity and visual perception phenomena than the classical linear receptive field. Here we start by optimizing, on a classic image quality database, the four parameters of a very simple INRF-based metric, and proceed to test this metric on three other databases, showing that its performance equals or surpasses that of the state-of-the-art methods, some of them having millions of parameters. Next, we extend to the temporal domain this INRF image quality metric, and test it on a very recent video dataset of high definition, high-quality videos, of standard as well as high framerate, processed at different compression levels, and with thousands of human quality scores. Our results show that the proposed INRF-based video quality metric consistently outperforms, often by a wide margin, the state-of-the-art in video quality metrics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3