Optimized CRISPR guide RNA library cloning reduces skew and enables more compact genetic screens

Author:

Heo Seok-Jin,Enriquez Lauren D.ORCID,Federman ScotORCID,Chang Amy Y.ORCID,Mace RachelORCID,Shevade KaivalyaORCID,Nguyen Phuong,Litterman Adam J.,Shafer Shawn,Przybyla LaralynneORCID,Chow Eric D.ORCID

Abstract

ABSTRACTThe development of CRISPR genetic screening tools has improved functional genomics, as these tools enable precise genomic editing, provide broad access to genomic regions beyond protein-coding genes, and have fewer off-target effects than other functional genomics modalities, allowing for novel applications with smaller library sizes compared to prior technologies. Pooled functional genomics screens require high cellular coverage per perturbation to accurately quantify phenotypes and average out phenotype-independent variability across the population. While more compact libraries have decreased the number of cells needed for a given screen, the cell coverage required for large-scale CRISPR screens still poses technical hurdles to screen in more challenging systems, such as iPSC-derived and primary cells. A major factor that influences cell coverage is screening library uniformity, as larger variation in individual guide RNA abundance requires higher cell coverage to reliably measure low-abundance guides. In this work, we have systematically optimized guide RNA cloning procedures to decrease bias. We implement these protocols to demonstrate that CRISPRi screens using 10-fold fewer cells than the current standard provides equivalent statistically significant hit-calling results to screens run at higher coverage, opening the possibility of conducting genome-wide and other large-scale CRISPR screens in technically challenging models.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3