Cellular and Fibrillar Collagen Analyses in an Animal Model of Retinal Detachment-Related Proliferative Vitreoretinopathy Reveals a Defined Transition to Chronic Fibrosis

Author:

Peterson CorneliaORCID,Santiago Clayton P.ORCID,Lu Yuchen,Price Antoinette,McNally Minda M.,Schubert William,Blackshaw SethORCID,Eberhart Charles G.ORCID,Singh Mandeep S.ORCID

Abstract

AbstractPurposeProliferative vitreoretinopathy (PVR) is the most common cause of failure of surgically repaired rhegmatogenous retinal detachment (RRD). Chemically-induced and cell-injection PVR models do not fully simulate the clinical characteristics of PVR in the post-RRD context. There is an unmet need for translational models in which to study mechanisms and treatments specific to RRD-PVR.MethodsRRD-PVR was induced in adult Dutch Belted rabbits. Posterior segments of enucleated globes were fixed or processed for RNA-Seq at 6 hours and 2, 7, 14, and 35 days post-induction. Histochemical staining and immunolabeling for glial fibrillary acidic protein (GFAP), alpha smooth muscle actin (αSMA), vascular endothelial growth factor receptor 2 (VEGFR2), CD68, and retinal pigment epithelium 65 kDa protein (RPE65) were performed, and labeling intensity was scored. Single cell RNA sequencing was performed.ResultsAcute histopathologic changes included intravitreal and intraretinal hemorrhage, leukocytic vitritis, chorioretinitis, and retinal rarefaction. Chronic lesions showed retinal atrophy, gliosis, fibrotic subretinal membranes, and epiretinal fibrovascular proliferation. Fibrillar collagen was present in the fibrocellular and fibrovascular membranes in chronic lesions. Moderate to strong labeling of glia and vasculature was detected in chronic lesions. At day 14, most cells profiled by single cell sequencing were identified as Müller glia and microglia, consistent with immunolabeling. Expression of several fibrillar collagen genes were upregulated in chronic lesions.ConclusionsHistologic and transcriptional features of this rabbit model simulate important features of human RRD-PVR, including the transition to chronic intra and periretinal fibrosis. This high-fidelityin vivomodel of RRD-PVR will enable further research on targeted treatment interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3