Purging due to self-fertilization does not prevent accumulation of expansion load

Author:

Zeitler LeoORCID,Parisod ChristianORCID,Gilbert Kimberly J.ORCID

Abstract

AbstractSpecies range expansions are a common demographic history presenting populations with multiple evolutionary challenges. It is not yet fully understood if self-fertilization, which is often observed at species range edges, may create an evolutionary advantage against these challenges. Selfing provides reproductive reassurance to counter Allee effects and selfing may purge accumulated mutational burden due to founder events (expansion load) by further increasing homozygosity. We study how selfing impacts the accumulation of genetic load during range expansion via purging and/or speed of colonization. Using simulations, we disentangle inbreeding effects due to demography versus due to selfing and find that selfers expand faster, but still accumulate load, regardless of mating system. The severity of variants contributing to this load, however, differs across mating system: higher selfing rates purge large-effect recessive variants leaving a burden of smaller-effect alleles. We compare these predictions to the mixedmating plantArabis alpina, using whole-genome sequences from refugial outcrossing populations versus expanded selfing populations. Empirical results indicate accumulation of expansion load along with evidence of purging in selfing populations, concordant with our simulations, and suggesting that while purging is a benefit of selfing evolving during range expansions, it is not sufficient to prevent load accumulation due to range expansion.Author SummaryThe geographic space that species occupy, i.e. the species range, is known to fluctuate over time due to changing environmental conditions. Since the most recent glaciation, many species have recolonized available habitat as the ice sheets melted, expanding their range. When populations at species range margins expand into newly available space, they suffer from an accumulation of deleterious alleles due to repeated founder effects. We study whether self-fertilization, which is considered an evolutionary deadend, can be favored under these expanding edge conditions. Selfing has two important effects: allowing for faster expansion due to reproductive assurance and purging recessive deleterious alleles by exposing them to selection as homozygotes. We use simulations to identify the impact of selfing on expanded populations and then compare these results to an empirical dataset to assess whether our predictions are met. We use the mixed-mating plant alpine rock-cress (Arabis alpina) since it has both expanded since the last glaciation and undergone a mating shift to selfing. We find that selfing does not prevent the accumulation of deleterious load, however purging does still act to remove the most severe variants, indicating that selfing provides this benefit during range expansions.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3