A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

Author:

Morris David M,Wang Chengjia,Papanastasiou GiorgosORCID,Gray Calum DORCID,Badr SammyORCID,Paccou JulienORCID,Semple Scott IK,MacGillivray TomORCID,Cawthorn William PORCID

Abstract

ABSTRACTOBJECTIVESBone marrow adipose tissue (BMAT) represents >10% of total fat mass in healthy humans and further increases in diverse clinical conditions, but the impact of BMAT on human health and disease remains poorly understood. Magnetic resonance imaging (MRI) allows non-invasive measurement of the bone marrow fat fraction (BMFF), and human MRI studies have begun identifying associations between BMFF and skeletal or metabolic diseases. However, such studies have so far been limited to smaller cohorts: analysis of BMFF on a larger, population scale therefore has huge potential to reveal fundamental new knowledge of BMAT’s formation and pathophysiological functions. The UK Biobank (UKBB) is undertaking whole-body MRI of 100,000 participants, providing the ideal opportunity for such advances.MATERIALS AND METHODSHerein, we developed a deep learning pipeline for high-throughput BMFF analysis of these UKBB MRI data. Automatic bone marrow segmentation was achieved by designing new lightweight attention-based 3D U-Net convolutional neural networks that allowed more-accurate segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained against four bone marrow regions of interest: the spine, femoral head, total hip and femoral diaphysis. Models were validated using a further 10-12 datasets for each region and then used to segment datasets from a further 729 UKBB participants. BMFF was then determined and assessed for expected and new pathophysiological characteristics.RESULTSDice scores confirmed the accuracy of the models, which matched or exceeded that for conventional U-Net models. The BMFF measurements from the 729-subject cohort confirmed previously reported relationships between BMFF and age, sex and bone mineral density, while also identifying new site- and sex-specific BMFF characteristics.CONCLUSIONSWe have established a new deep learning method for accurate segmentation of small structures from large volumetric data. This method works well for accurate, large-scale BMFF analysis from UKBB MRI data and has the potential to reveal novel clinical insights. The application of our method across the full UKBB imaging cohort will therefore allow identification of the genetic and pathophysiological factors associated with altered BMAT. Together, our findings establish the utility of deep learning for population-level BMFF analysis and promise to help elucidate the full impact of BMAT on human health and disease.HighlightsWe establish a new deep learning method for image segmentation.Our method improves segmentation of small structures from large volumetric data.Using our method, we assess bone marrow fat fraction (BMFF) in UK Biobank MRI data.This is the first use of deep learning for large-scale, multi-site BMFF analysis.Our results highlight the potential of BMFF as a new clinical biomarker.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3