Development and validation of a proteomic biomarker risk predictor for preterm preeclampsia in asymptomatic women

Author:

Laurent Louise C.ORCID,Saade George R.ORCID,Burchard JuljaORCID,Fox Angela C.ORCID,Polpitiya Ashoka D.ORCID,Badsha Md. BahadurORCID,Fleischer Tracey C.ORCID,Garite Thomas J.ORCID,Boniface J. JayORCID,Kearney Paul E.ORCID

Abstract

AbstractBackgroundClinical risk factors for preeclampsia (PE), including previous PE, chronic hypertension, and pregestational diabetes, are poorly predictive of PE. Preterm PE, defined as diagnosis of PE with delivery prior to 37 weeks’ gestational age (GA), is more likely to be associated with serious morbidities and difficult clinical decision making. Therefore, there remains an urgent clinical need to develop a safe, feasible, and accurate predictor of preterm PE that integrates molecular biomarkers and relevant clinical factors into a single risk assessment score that can be used to guide clinical management.Objective(s)To discover, verify, and validate a mid-trimester proteomic biomarker risk predictor for preterm PE, comprised of a composite clinical variable and a small number of maternal serum analytes.Study DesignThis was a secondary analysis of data from two large clinical trials (PAPR,NCT02787213; TREETOP,NCT01371019). PAPR subjects’ eligibility was limited to those who had consented to research into preterm birth and pregnancy complications and who had blood drawn between 180/7– 226/7weeks’ gestation. TREETOP subjects were limited to those who had blood drawn between 180/7– 206/7weeks’ gestation. PAPR subjects were assigned to a discovery cohort, and TREETOP subjects were randomly assigned to a first-phase cohort for verification (comprised of one-third of eligible subjects) and to a separate second-phase cohort for validation (comprised of the remaining two-thirds of eligible subjects). Peptides were analyzed by liquid chromatography-multiple reaction monitoring mass spectrometry measuring 77 pregnancy-related proteins and quality control proteins. Models were limited to a maximum of one additional protein ratio and a composite clinical variable, referred to as Clin3, which was deemed positive if any of three factors was true for the subject: prior PE; pre-existing hypertension; and/or pregestational diabetes. Overall classifier performance was assessed via area under the receiver operating characteristic curve (AUC).ResultsVerification yielded nine multi-component classifier models for prediction of preterm PE, all of which were subsequently validated. Classifiers exhibited greater predictive performance than clinical factors alone. Example performance metrics across a range of classifier score thresholds and GA at birth cutoffs of 37, 34 and 32 weeks for the Clin3 + inhibin subunit beta c (INHBC)/SHBG classifier, which showed the highest AUC, demonstrating a sensitivity of 89% at a specificity of 75% for prediction of early-onset preeclampsia (<34 weeks’ GA).Conclusion(s)Here, we report on discovery, verification, and validation of models for prediction of preterm PE. The log ratio of INHBC/SHBG along with any one of three clinical risk factors demonstrated high sensitivity and specificity. This combination of protein biomarkers and clinical factors has the potential to be used in the mid-trimester of pregnancy to guide clinical management to avoid both unnecessary medical procedures and the most serious complications of early-onset PE.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3