Abstract
AbstractThe anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Non-human primate (NHP) retina is anatomically closest to the human retina with the presence of a high acuity region called the fovea. However, there is a lack of relevant NHP models for retinal degeneration that can be used for preclinical studies of vision restoration. To address this unmet need we aimed to generate inducible NHP models of photoreceptor degeneration. We generated three cynomolgus macaque models using distinct strategies. We used two genetically targeted strategies using optogenetics and Crispr-Cas9 to ablate specifically rods to mimic rod-cone dystrophy. Additionally, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Retinal degeneration was evaluated in all three models by in-life exams such as fundus imaging, optical coherence tomography, adaptive optics and electroretinography. In the genetic models we observed punctuate areas of degeneration in the injected area marked by disorganization of outer segments, loss of rod photoreceptors and thinning of the outer nuclear layer. In the acute model, the degeneration was faster and involved both rods and cones. Among the three distinct NHP models, the Crispr-Cas9 based approach was the most advantageous model in view of recapitulating disease specific features and its ease of implementation. The acute model however resulted in the fastest degeneration making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.
Publisher
Cold Spring Harbor Laboratory