Author:
Radoux-Mergault Arthur,Oberhauser Lucie,Aureli Simone,Gervasio Francesco Luigi,Stoeber Miriam
Abstract
AbstractG protein-coupled receptors in intracellular organelles can be activated in response to membrane permeant ligands, which contributes to the diversity and specificity of agonist action. The opioid receptors (ORs) provide a striking example, where opioid drugs activate ORs in the Golgi apparatus within seconds of drug addition. Till date, our knowledge on the signaling of intracellular GPCRs remains incomplete and it is unknown if the downstream effects triggered by ORs in plasma membrane and Golgi apparatus differ. To address this gap, we first assess the recruitment of signal transducers to ORs in both compartments. We find that Golgi-localized ORs couple to Gαi/o probes and are phosphorylated by GPCR kinases (GRK2/3), but unlike plasma membrane receptors, do not recruit β-arrestin or a specific Gα probe. Subsequent molecular dynamics simulations with OR–transducer complexes in model bilayers mimicking plasma membrane or Golgi composition reveal that the lipid environment promotes location selective coupling. Unbiased global analyses then show that OR activation in the plasma membrane and Golgi apparatus has strikingly different downstream effects on transcription and protein phosphorylation. Taken together, the study delineates OR signal transduction with unprecedented spatial resolution and reveals that the subcellular location defines the signaling effect of opioid drugs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献