Revisiting chromatin packaging in mouse sperm

Author:

Yin Qiangzong,Yang Chih-Hsiang,Strelkova Olga S.,Sun YuORCID,Gopalan Sneha,Yang Liyan,Dekker Job,Fazzio Thomas G.,Li Xin Zhiguo,Gibcus Johan,Rando Oliver J.

Abstract

ABSTRACTMammalian sperm exhibit an unusual and heavily-compacted genomic packaging state. In addition to its role in organizing the compact and hydrodynamic sperm head, it has been proposed that sperm chromatin architecture helps to program gene expression in the early embryo. Scores of genome-wide surveys in sperm have reported patterns of chromatin accessibility, histone localization, histone modification, and chromosome folding. Here, we revisit these studies in light of our recent finding that sperm obtained from the mouse epididymis are contaminated with low levels of cell-free chromatin. In the absence of proper sperm lysis we readily recapitulate multiple prominent genomewide surveys of sperm chromatin, suggesting that these profiles primarily reflect contaminating cell-free chromatin. Removal of cell-free DNA, along with appropriate lysis conditions, are required to reveal a sperm chromatin state distinct from any yet reported. Using ATAC-Seq to explore relatively accessible genomic loci, we identify a landscape of open loci associated with genes expressed during late spermiogenesis. Histone modification and chromosome folding studies also strongly support the hypothesis that prior studies suffer from contamination, but technical challenges associated with reliably preserving the architecture of the compacted sperm head prevent us from confidently assaying true localization patterns for these epigenetic marks. Together, our studies strongly argue that our knowledge of mammalian chromosome packaging remains largely incomplete, and motivate future efforts to more accurately characterize genome organization in mature sperm.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3