Mycorrhizal status impacts the genetic architecture of mineral accumulation in field grown maize (Zea maysssp.maysL.)

Author:

Li MengORCID,Perez-Limón SergioORCID,Ramírez-Flores M. RosarioORCID,Barrales-Gamez BenjamínORCID,Meraz-Mercado Marco AntonioORCID,Ziegler GregoryORCID,Baxter IvanORCID,Olalde-Portugal VíctorORCID,Sawers Ruairidh J. H.ORCID

Abstract

SUMMARYArbuscular mycorrhizal fungi (AMF) establish symbioses with major crop species, providing their hosts with greater access to mineral nutrients and promoting tolerance to heavy metal toxicity. There is considerable interest in AMF as biofertilizers and for their potential in breeding for greater nutrient efficiency and stress tolerance. However, it remains a challenge to estimate the nutritional benefits of AMF in the field, in part due to a lack of suitable AMF-free controls. Here we evaluated the impact of AMF on the concentration of 20 elements in the leaves and grain of field grown maize using a custom genetic mapping population in which half of the families carry the AMF-incompatibility mutationcastor. By comparing AMF-compatible and AMF-incompatible families, we confirmed the benefits of AMF in increasing the concentration of essential mineral nutrients (e.g., P, Zn, and Cu) and reducing the concentration of toxic elements (e.g., Cd and As) in a medium-input subtropical field. We characterised the genetic architecture of element concentration using quantitative trait mapping and identified loci that were specific to AMF-compatible or AMF-incompatible families, consistent with their respective involvement in mycorrhizal or direct nutrient uptake. Patterns of element covariance changed depending on AMF status and could be used to predict variation in mycorrhizal colonisation. We comment on the potential of AMF to drive genotype-specific differences in the host ionome across fields and to impact the alignment of biofortification breeding targets. Our results highlight the benefits of AMF in improving plant access to micronutrients while protecting from heavy metals, and indicate the potential benefits of considering AMF in biofortification programs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3