Mechanism of LLPS of SARS-CoV-2 N protein

Author:

Dang Mei,Li Tongyang,Song Jianxing

Abstract

AbstractSARS-CoV-2 nucleocapsid (N) protein with low mutation rate is the only structural protein not only functioning to package viral genomic RNA, but also manipulating the host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) not only sheds light on previously-unknown mechanisms underlying the host-SARS-CoV-2 interaction and viral life cycle, but most importantly opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of LLPS of N protein still remains unknown because it is not amenable for high-resolution biophysical investigations. Here we systematically dissected N protein into differential combinations of domains followed by DIC and NMR characterization. We successfully identified N (1-249), which not only gives high-quality NMR spectra, but phase separates as the full-length N protein. The results together decode for the first time: 1) nucleic acid modulates LLPS by dynamic but specific interactions multivalently over both folded NTD/CTD and Arg/Lys residues within IDRs. 2) ATP, mysteriously with concentrations >mM in all living cells but absent in viruses, not only specifically binds NTD/CTD, but also Arg residues within IDRs with Kd of 2.8 mM. 3) ATP dissolves LLPS by competitively displacing nucleic acid from binding the protein. Therefore, ATP and nucleic acid interplay in modulating LLPS by specific competitions for binding over the highly overlapped binding sites. Our study deciphers the mechanism of LLPS of N protein, which is targetable by small molecules. ATP is not only emerging as a cellular factor controlling the host-SARS-CoV-2 interaction, but also provides a lead for developing anti-SARS-CoV-2 drugs efficient for different variants of SARS-CoV-2. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. World Health Organization. 2020. WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization, Geneva, Switzerland.

2. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing

3. Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle

4. The nucleocapsid protein of SARS–CoV-2: A target for vaccine development;J. Virol,2020

5. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates;FASEB J,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3