PACESS: Practical AI-based Cell Extraction and Spatial Statistics for large 3D biological images

Author:

Adams George,Tissot Floriane S.ORCID,Liu Chang,Brunsdon Chris,Duffy Ken R.,Lo Celso Cristina

Abstract

ABSTRACTEfficient methodologies to fully extract and analyse large datasets remain the Achilles heels of 3D tissue imaging. Here we present PACESS, a pipeline for large-scale data extraction and spatial statistical analysis from 3D biological images. First, using 3D object detection neural networks trained on annotated 2D data, we identify and classify the location of hundreds of thousands of cells contained in large biological images. Then, we introduce a series of statistical techniques tailored to work with spatial data, resulting in a 3D statistical map of the tissue from which multi-cellular interactions can be clearly understood. As illustration of the power of this new approach, we apply this analysis pipeline to an organ known to have a complex and still poorly understood cellular structure: the bone marrow. The analysis reveals coherent, useful biological information on multiple cell population interactions. This novel and powerful spatial analysis pipeline can be broadly used to unravel complex multi-cellular interaction towards unlocking tissue complexity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3