Time-dependent material properties of ageing biomolecular condensates from different viscoelasticity measurements in molecular dynamics simulations

Author:

Tejedor Andrés R.ORCID,Collepardo-Guevara RosanaORCID,Ramírez JorgeORCID,Espinosa Jorge R.ORCID

Abstract

Biomolecular condensates are important contributors to the internal organization of the cell material. While initially described as liquid-like droplets, the term biomolecular condensates is now used to describe a diversity of condensed phase assemblies with material properties extending from low to high viscous liquids, gels, and even glasses. Because the material properties of condensates are determined by the intrinsic behaviour of their molecules, characterising such properties is integral to rationalising the molecular mechanisms that dictate their functions and roles in health and disease. Here, we apply and compare three distinct computational methods to measure the viscoelasticity of biomolecular condensates in molecular simulations. These methods are the shear stress relaxation modulus integration (SSRMI), the oscillatory shear (OS) technique, and the bead tracking (BT) method. We find that, although all of these methods provide consistent results for the viscosity of the condensates, the SSRMI and OS techniques outperform the BT method in terms of computational efficiency and statistical uncertainty. We, thus, apply the SSRMI and OS techniques for a set of 12 different protein/RNA systems using a sequence-dependent high-resolution coarse-grained model. Our results reveal a strong correlation between condensate viscosity and density, as well as with protein/RNA length and the number of stickersvs.spacers in the amino-acid protein sequence. Moreover, we couple the SSRMI and the OS technique to nonequilibrium molecular dynamics simulations that mimic the progressive liquid-to-gel transition of protein condensates due to the accumulation of inter-proteinβ-sheets. We compare the behaviour of three different protein condensates—i.e., those formed by either hnRNPA1, FUS, or TDP-43 proteins—whose liquid-to-gel transitions are associated with the onset of amyotrophic lateral sclerosis and frontotemporal dementia. We find that both SSRMI and OS techniques successfully predict the transition from functional liquid-like behaviour to kinetically arrested states once the network of inter-proteinβ-sheets has percolated through the condensates. Overall, our work provides a comparison of different modelling rheological techniques to assess the viscosity of biomolecular condensates, a critical magnitude that provides information on the behaviour of biomolecules inside condensates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3